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Abstract

In-plane and out-of-plane motions of a semi-circular pipe conveying fluid are analyzed in this paper. Assuming that the

centerline of the semi-circular pipe is extensible, nonlinear equations of in-plane and out-of-plane motions are derived

according to the extended Hamilton principle. The Lagrange nonlinear strain theory and the Euler–Bernoulli beam theory

are used to derive the equations. The derived equations of motion are discretized by applying the Galerkin method.

Linearized equations around the equilibrium position are obtained from the discretized equations, and then the dynamic

characteristics of the pipe are investigated. In addition, some modelling issues, which are related to the nonlinearity of the

circumferential strain and stress, are discussed. This study finds that a semi-circular pipe conveying fluid does not lose

stability even at a high fluid velocity. Although a model using the Lagrange nonlinear strain and the corresponding

nonlinear stress yields the most accurate computational results of the natural frequencies, a model using the Lagrange

strain and a linearized stress is recommended to compute the natural frequencies efficiently while still maintaining

accuracy.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration analyses of pipes conveying fluid have attracted the attention of many researchers, because the
pipes are used in many industrial applications including heat-exchangers, refrigerators, air-conditioners,
chemical plants and hydropower systems. Many studies have investigated nonlinear dynamics and stabilities
of straight pipes conveying fluid [1–6]. In contrast, there are significantly fewer studies on curved pipes.

Chen [7,8] proposed an early dynamic model for the vibration analysis of a curved pipe conveying fluid. In
his papers, the equations of in-plane and out-of-plane motions for a curved pipe were derived under the
assumption that a pipe centerline is inextensible. Chen claimed that the dynamic characteristics of a curved
pipe are similar to those of a straight pipe. Hill and Davis [9] derived the equations of motion to study the
effects of initial forces on the stabilities of curved pipes. They found that the dynamical instabilities do not
exist in a curved pipe when the pipe centerline is extensible. On the other hand, Misra et al. [10,11] studied the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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differences of the dynamic characteristics between the curved pipes with extensible and inextensible centerlines.
They concluded that a pipe model with an extensible centerline is more reasonable than a model with an
inextensible centerline. Using a pipe model with an extensible centerline, Dupuis and Rousselet [12,13] derived
nonlinear equations of motion for curved pipes conveying fluid with the consideration of the geometric
nonlinearity and the infinitesimal strain simultaneously. However, the Lagrange nonlinear strain theory is
more appropriate than the infinitesimal strain theory, because the infinitesimal strain is suitable for a linear
system while the Lagrange strain is suitable for a nonlinear system. Adopting the Lagrange strain theory, Lee
and Chung [14] presented a nonlinear model of a straight pipe conveying fluid. To the authors’ knowledge,
nonlinear equations of motion derived by considering nonlinearity with the Lagrange strain theory have not
been reported for a curved pipe conveying fluid.

The in-plane and out-of-plane motions of a semi-circular pipe conveying fluid are analyzed in this paper.
The semi-circular pipe is modelled as a curved Euler–Bernoulli beam with an extensible centerline. Since the
pipe could undergo a large deformation at a high fluid velocity, the Lagrange strain theory is used to describe a
nonlinear behavior due to the large deformation. After the nonlinear equations of motion are derived by
applying the extended Hamilton principle [15], the equations of motion are discretized by the Galerkin
method. Based on the linearized equations in the neighborhood of the equilibrium position, the natural
frequencies of the semi-curved pipe are analyzed for the variation of fluid velocity. In addition, five models for
the circumferential strain and stress are discussed, related to the nonlinearity of pipe.

2. Derivation of equations of motion

Consider a semi-circular pipe conveying fluid, as shown in Fig. 1, which is fixed at both ends. The semi-
circular pipe has a centerline radius R, a cross-sectional outer diameter do and a wall thickness h. It is assumed
that the pipe conveys an incompressible plug flow with a constant velocity U. To describe both the in-plane
and out-of-plane motions of the pipe, two coordinate systems may be used: inertial and body-fixed. In Fig. 1,
the XYZ coordinates are the inertial coordinates while the xyz coordinates are the body-fixed coordinates. The
position of the body-fixed coordinate frame relative to the inertial coordinate frame is defined by the
circumferential coordinate y which is measured from the X-axis. The directions of the x and y axes coincide
with the radial and tangential directions of the pipe centerline, respectively.

The displacements of a point in the pipe can be expressed by using the Euler–Bernoulli beam theory. The pipe
can be modelled as an Euler–Bernoulli beam if it is sufficiently slender or the cross-sectional outer diameter do is
much smaller compared to the centerline radius R. This means that the planar cross-section perpendicular to the
y-axis remains a plane after deformation and the shear deformation in the yz plane is negligible. Denoting the x,
y and z-directional displacements of an arbitrary point in the pipe by ux, uy and uz, respectively, they may be
represented in terms of the displacements of a point on the centerline and a twist angle about the y-axis:

uxðz; y; tÞ ¼ uðy; tÞ þ zfðy; tÞ; uyðx; z; y; tÞ ¼ vðy; tÞ þ xfiðy; tÞ � zfoðy; tÞ

uzðx; y; tÞ ¼ wðy; tÞ � xfðy; tÞ, ð1Þ
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Fig. 1. Schematics of an extensible semi-circular pipe conveying fluid: (a) top view and (b) cross-section.
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where t is time; u, v and w are displacements of a point on the centerline in the x, y and z directions; f is a twist
angle about the y-axis due to torsion; fi is a rotation angle about the z-axis due to in-plane bending
deformation; and fo is a rotation angle about the x-axis due to out-of-plane bending. The rotation angles, fi

and fo, due to in-plane and out-of-plane bending deformations are given by

fi ¼ ðv� u0Þ=R; fo ¼ w0=R, (2)

where the prime denotes the partial derivative with respect to y [16].
To obtain the kinetic energy of the fluid-conveying pipe, velocities of both the pipe and the fluid need to be

expressed in terms of the displacements u, v and w. The displacement vector of a point in the pipe after
deformation can be written as

r ¼ ðRþ xþ uxÞiþ uyjþ ðzþ uzÞk, (3)

where i, j and k are unit vectors along the x, y and z axes, respectively. Differentiation of Eq. (3) with respect
to time leads to the pipe velocity

vp ¼ v̄p þ xxi þ zxo, (4)

where

v̄p ¼ _uiþ _vjþ _wk; xi ¼ ð_v� _u0Þ=Rj� _fk; xo ¼
_fi� _w0=Rj, (5)

in which the superposed dot denotes differentiation with respect to time. Note that v̄p is the velocity of a point
in the pipe centerline, xi is the angular velocity about the z-axis, and xo is the angular velocity about the
x-axis. On the other hand, the material derivative of Eq. (3) results in the fluid velocity expressed by

vf ¼ v̄f þ xwi þ zwo, (6)

where

v̄f ¼ ½ _uþUðu0 � vÞ=R�iþ ½_vþUðRþ uþ v0Þ=R�jþ ½ _wþUw0=R�k,

wi ¼ � ðU=RÞ _fiiþ ½
_fi þ ðU=RÞð1þ f0iÞ�j� ½ _fþ ðU=RÞf0�k,

wo ¼ ½
_fþ ðU=RÞðf0 þ foÞ�i� ½

_fo � ðU=RÞðf� f0oÞ�j. ð7Þ

The detailed procedure to derive the above fluid velocity can be found in Ref. [17] which has been recently
published. Since the circular pipe is assumed to be slender, the rotary inertia effects of the pipe about the x and
z axes can be neglected. Therefore, the kinetic energy of the semi-circular pipe conveying fluid may be
expressed as

T ¼ 1
2

Z p

0

ðmpv̄p � v̄p þ Ip
_f
2
þmf v̄f � v̄f ÞRdy, (8)

where mp and mf are pipe mass and fluid mass per unit length of pipe, respectively, and Ip is the polar mass
moment of inertia about the y-axis per unit length of pipe:

Ip ¼
mp

A

Z
A

ðx2 þ z2ÞdA, (9)

where A is the cross-sectional area of the pipe.
The geometric nonlinearity due to large deformation of a beam can be generally described by the Lagrange

strain theory [18], which describes nonlinear relations between the strains and the displacements. Based
on the Lagrange strain theory, the circumferential normal strain at an arbitrary point in the pipe may be
represented by

�y ¼ �̄y þ xf0i=Rþ zðf� f0oÞ=Rþ ð�̄2y þ f2
i þ f2

oÞ=2, (10)

where �̄y is the linear strain at a point on the pipe centerline given by

�̄y ¼ ðuþ v0Þ=R. (11)

Note that the first three terms in the right-hand side of Eq. (10) are linear while the last term is nonlinear.
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Since the nonlinearity resulting from the shear deformation due to torsion is negligible, the shear strains
can be expressed as linear combinations of displacements. Based on Ref. [19], the linear shear strains can be
expressed as

gxy ¼ zðf0 þ foÞ=R; gyz ¼ �xðf0 þ foÞ=R. (12)

Next, consider the strain energy of the semi-circular pipe. It is assumed that the material of the pipe is
homogeneous, isotropic, elastic and Hookean. Therefore, the stress–strain relations are given by

sx ¼ E�x; sy ¼ E�y; sz ¼ E�z; txy ¼ Ggxy; tyz ¼ Ggyz; tzx ¼ Ggzx, (13)

where E and G are Young’s modulus and shear modulus, respectively. Since the outer radius do and the
thickness h of the pipe are very small in comparison with the pipe radius R, stresses sx, sz and tzx can be
neglected. In this case, the strain energy of the pipe may be expressed as

V ¼
1

2

Z p

0

Z
A

ðsy�y þ txygxy þ tyzgyzÞRdAdy, (14)

where sy, txy and tyz are the circumferential normal stress, radial shear stress and out-of-plane shear stress of
the pipe, respectively.

The equations of motion and the associated boundary conditions for the semi-circular pipe conveying fluid
are derived from the extended Hamilton principle [15]. For an open system with mass transport, the extended
Hamilton principle is given by Z t2

t1

ðdT � dV þ dWnc � dMÞdt ¼ 0, (15)

where d is the variation operator, dWnc is the virtual work done by non-conservative forces, and dM is the
virtual momentum transport. The virtual work of this system is zero when non-conservative forces do not exist
during free vibration of the pipe. On the other hand, since the pipe system has momentum transport of fluid at
the boundaries, the virtual momentum transport should be considered. The virtual momentum may be
expressed as

dM ¼ mf ðvf � drÞðU j � nÞ
��p
0
, (16)

where n is an outward normal unit vector at the boundaries. Introducing Eqs. (8), (14) and (16) into Eq. (15),
the coupled nonlinear equations of motion are obtained as follows:

ðmp þmf Þ €uþ 2mf Uð _u0 � _vÞ=Rþmf U2ðu00 � u� 2v0Þ=R2 þ EIðuiv � v000Þ=R4

þ ðEA=RÞfð1þ �̄yÞð2�̄y þ �̄
2
y þ f2

i þ f2
oÞ=2þ ½fið2�̄y þ �̄

2
y þ f2

i þ f2
oÞ=2�

0g ¼ mf U2=R, ð17Þ

ðmp þmf Þ€vþ 2mf Uð _uþ _v0Þ=Rþmf U2ð2u0 þ v00 � vÞ=R2 þ EIðu000 � v00Þ=R4

� ðEA=RÞf½ð1þ �̄yÞð2�̄y þ �̄
2
y þ f2

i þ f2
oÞ=2�

0 � fið2�̄y þ �̄
2
y þ f2

i þ f2
oÞ=2g ¼ 0, ð18Þ

ðmp þmf Þ €wþ 2mf U _w0=Rþmf U2w00=R2 þ EIðwiv � Rf00Þ=R4

� ðEA=RÞ½foð2�̄y þ �̄
2
y þ f2

i þ f2
oÞ=2�

0 � GJðw00 þ Rf00Þ=R3 ¼ 0, ð19Þ

Ip
€f� EIðw00 � RfÞ=R3 � GJðw00 þ Rf00Þ=R2 ¼ 0, (20)

where I is the area moment of inertia about the x or z-axis and J is the polar area moment of inertia about the
y-axis:

I ¼

Z
A

x2 dA ¼

Z
A

z2 dA; J ¼

Z
A

ðx2 þ z2ÞdA. (21)

The associated boundary conditions are given by

u ¼ u0 ¼ v ¼ w ¼ w0 ¼ f ¼ 0 at y ¼ 0;p. (22)
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Eqs. (17)–(19) are for translation of the curved pipe conveying fluid while Eq. (20) is for torsional
motion about the y-axis. Also noted that Eqs. (17)–(19) are nonlinear equations but Eq. (20) is a linear
equation.

3. Discretization

Since exact solutions for Eqs. (17)–(20) cannot be found, the Galerkin method is used to obtain
approximate solutions in a finite-dimensional function space. The displacements u, v and w as well as the twist
angle f may be represented by the trial functions that are expressed as a series of the basis functions. In this
study, the basis functions are adopted as the comparison functions that satisfy both the essential and natural
boundary conditions. The trial functions for u, v and w may be represented as

uðy; tÞ ¼
XN

n¼1

unðyÞxu
nðtÞ; vðy; tÞ ¼

XN

n¼1

vnðyÞxv
nðtÞ; wðy; tÞ ¼

XN

n¼1

wnðyÞxw
n ðtÞ (23)

and the trial function for f can be written as

fðy; tÞ ¼
XN

n¼1

fnðyÞx
f
n ðtÞ, (24)

where N is the total number of the basis functions; un(y), vn(y), wn(y) and fn(y) are the basis function or the
comparison functions; and xu

nðtÞ; xv
nðtÞ; xw

n ðtÞ and xf
n ðtÞ are unknown functions of time to be determined.

The comparison functions are selected as the eigenfunctions of bending and axial vibrations for a straight
beam:

unðyÞ ¼ wnðyÞ ¼ cosh lny� cos lny�
cosh pln � cos pln

sinh pln � sin pln

ðsinh lny� sin lnyÞ

vnðyÞ ¼ fnðyÞ ¼
ffiffiffi
2
p

sin ny, ð25Þ

where ln are the roots of

cosh pln cos pln � 1 ¼ 0. (26)

Note that the comparison functions satisfy the boundary conditions of Eq. (22). The weighting functions
corresponding to the trial functions can be represented by

ūðy; tÞ ¼
XN

n¼1

unðyÞx̄u
nðtÞ; v̄ðy; tÞ ¼

XN

n¼1

vnðyÞx̄v
nðtÞ; w̄ðy; tÞ ¼

XN

n¼1

wnðyÞx̄w
n ðtÞ

f̄ðy; tÞ ¼
XN

n¼1

fnðyÞx̄
f
n ðtÞ, ð27Þ

where x̄u
nðtÞ; x̄v

nðtÞ; x̄w
n ðtÞ and x̄f

n ðtÞ are arbitrary functions of time.
The discretized equations can be obtained by substituting u, v, w and f of Eq. (25) into Eqs. (17)–(20),

multiplying these equations by ū; v̄; w̄ and f̄ of Eq. (27) respectively, summing all the equations, integrating
them over the domain of 0pypp, and then collecting all the terms with respect to x̄u

n; x̄v
n; x̄w

n and x̄f
n . The

coefficients of x̄u
n; x̄v

n; x̄w
n and x̄f

n provide a series of discretized equations. These equations may be expressed
as the following nonlinear matrix-vector equation:

M €xþ 2UG _xþ ðKþU2BÞxþNðxÞ ¼ U2F, (28)

where M is the mass matrix, G is the matrix related to the gyroscopic force, K is the structural stiffness matrix,
B is the matrix related to the centrifugal force, N is the nonlinear vector, F is the load vector due to flow, and x

is the displacement vector given by

x ¼ fxu
1;x

u
2; . . . x

u
N ; xv

1; x
v
2; . . . x

v
N ; xw

1 ; x
w
2 ; . . . x

w
N ; x

f
1 ;x

f
2 ; . . . x

f
Ng

T. (29)
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4. Natural frequencies

To compute the natural frequencies of the semi-circular pipe conveying fluid, linearized equations should be
obtained when the pipe is in a steady state. Using the perturbation method, the displacement vector can be
expressed by

x ¼ x0 þ Dx, (30)

where x0 is the vector for the equilibrium position, and Dx stands for small perturbation from the equilibrium
position. When the pipe is in a steady state, the equilibrium position x0 is independent of time. Introduction of
Eq. (30) into Eq. (28) leads to an equilibrium equation

ðKþU2BÞx0 þNðx0Þ ¼ U2F (31)

and a linearized equation

MD €xþ 2UGD _xþ ðKþ KT þU2BÞDx ¼ 0, (32)

where KT represents the tangential stiffness matrix at the equilibrium position:

KT ¼
qNðxÞ
qx

����
x¼x0

. (33)

Since Eq. (31) is a nonlinear equation for x0, it should be solved by a nonlinear solver such as
the Newton–Raphson method. The tangential stiffness matrix, given by Eq. (33), is determined after solving
Eq. (31) for x0. Therefore, Eq. (32) describes a perturbed small motion in the neighborhood of the equilibrium
position.

To obtain the natural frequencies of the pipe conveying fluid, the eigenvalue problem is derived by assuming
the solution of Eq. (32) as

Dx ¼ Xeiont, (34)

where i ¼
ffiffiffiffiffiffiffi
�1
p

; X is a vibration amplitude vector, and on is the natural frequency. Substituting Eq. (34) into
Eq. (32), the following eigenvalue problem can be obtained:

ðKþ KT þU2B� o2
nMþ 2ionUGÞX ¼ 0. (35)

The natural frequencies are obtained from the condition that Eq. (35) has nontrivial solutions. This
condition is given by

detðKþ KT þU2B� o2
nMþ 2ionUGÞ ¼ 0. (36)

The natural frequencies can be computed numerically from Eq. (36), if all the parameters are specified. In
the computations of this study, the following material properties and dimensions are used: rp ¼ 7800 kg/m3,
rf ¼ 1000 kg/m3, E ¼ 72GPa, G ¼ 27GPa, R ¼ 200mm, do ¼ 22.25mm and h ¼ 1.6mm. For convenience of
comparison, a dimensionless natural frequency ō and a dimensionless fluid velocity Ū are introduced as
follows:

ōn ¼ onR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp þmf

EI

r
; Ū ¼ UR

ffiffiffiffiffiffi
mf

EI

r
. (37)

The convergence characteristics are investigated for the natural frequencies of the semi-circular pipe
conveying fluid. The convergence results for Ū ¼ 0 are presented in Table 1, where the two lowest natural
frequencies for the in-plane and out-of-plane motions converge with the total number of basis functions.
Moreover, the converged values agree well with the analytical values reported by Blevins [20]. The
convergence of the natural frequencies is also examined when the fluid velocity is not zero. Analytical values of
the natural frequencies are not available when the semi-circular pipe has non-zero fluid velocity. Therefore,
only convergence characteristics when Ū ¼ 2 are demonstrated in Table 2. Similarly to Table 1, Table 2 shows
that the natural frequencies converge fast with the number of basis functions. Tables 1 and 2 show that
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Table 1

Convergence characteristics of the two lowest dimensionless natural frequencies for the in-plane and out-of-plane motions when Ū ¼ 0

N In-plane natural frequencies Out-of-plane natural frequencies

ō1 ō2 ō1 ō2

1 54.6334 54.6712 2.0903 59.4277

2 28.2045 43.4818 2.0903 5.5518

3 4.8841 31.2243 1.8467 5.5518

4 4.4889 10.1156 1.8467 5.2938

5 4.4147 9.8325 1.8258 5.2938

6 4.3973 9.6512 1.8258 5.2597

7 4.3840 9.6374 1.8207 5.2597

8 4.3825 9.6041 1.8207 5.2496

9 4.3797 9.6030 1.8189 5.2496

10 4.3795 9.5955 1.8189 5.2455

Ref. [15] 4.3849 9.6329 1.8211 –

Table 2

Convergence characteristics of the two lowest dimensionless natural frequencies for the in-plane and out-of-plane motions when Ū ¼ 2

N In-plane natural frequencies Out-of-plane natural frequencies

ō1 ō2 ō1 ō2

1 53.6913 55.7151 2.0138 59.4277

2 28.2088 43.5716 1.9475 5.9968

3 4.9020 31.2951 1.6937 5.6968

4 4.3228 10.5006 1.6785 5.4553

5 4.2563 9.8438 1.6616 5.4241

6 4.2273 9.7227 1.6593 5.3991

7 4.2161 9.6753 1.6552 5.3931

8 4.2126 9.6517 1.6545 5.3861

9 4.2102 9.6446 1.6531 5.3841

10 4.2096 9.6392 1.6528 5.3813

D. Jung, J. Chung / Journal of Sound and Vibration 311 (2008) 408–420414
reasonably converged natural frequencies are obtained when N ¼ 10. Therefore, ten basis functions are used
for further computations of the natural frequencies.

The natural frequencies of the semi-curved pipe conveying fluid are investigated for the nonlinear model
given by Eqs. (17)–(20). For this model, the dimensionless natural frequencies ōn versus the dimensionless
fluid velocity Ū are shown in Fig. 2, where the solid lines represent the in-plane natural frequencies and the
dotted lines represent the out-of-plane natural frequencies. As seen in Fig. 2, the in-plane natural frequencies
when Ū is relatively large become smaller than the frequencies when Ū ¼ 0. However, the out-of-plane natural
frequencies show a behavior different from those of in-plane natural frequencies. The out-of-plane natural
frequencies have a tendency to increase with the fluid velocity. From this observation, it may be deduced that a
relatively large value of the fluid flow in the semi-circular pipe decreases the in-plane natural frequencies and
increases the out-of-plane natural frequencies. In other words, transportation of fast fluid flow imposes a
softening effect to the in-plane motion of a circular pipe while it imposes a stiffening effect to the out-of-plane
motion. To the authors’ knowledge, research comparing the in-plane and out-of-plane natural frequencies for
the nonlinear vibrations has not yet been published.

5. Nonlinear modelling

In this section, modelling issues are discussed related to the nonlinearity of the circumferential strain and
stress. The main topic of this section is the effect of modelling on the in-plane and out-of-plane natural
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Fig. 2. Dimensionless natural frequencies ōn versus the dimensionless fluid velocity Ū for the nonlinear model of the semi-circular pipe

conveying fluid. In-plane natural frequencies (solid line) and out-of-plane natural frequencies (dashed line).
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frequencies. In this paper, the model of the circumferential strain and stress used to derive Eqs. (17)–(20) are
called Model 1. In this model, the Lagrange nonlinear strain of Eq. (10) is adopted as the circumferential
strain and the corresponding nonlinear stress is given by the second equation of Eq. (13). According to the von
Karman strain theory, the quadratic term of the normal strain, �̄2y, is generally much smaller than the
quadratic terms of the in-plane and out-of-plane rotations, f2

i and f2
o. Neglecting the term �̄2y in Eq. (10), the

von Karman nonlinear strain is obtained as

�y ¼ �̄y þ xf0i=Rþ zðf� f0oÞ=Rþ ðf2
i þ f2

oÞ=2. (38)

Model 2 is defined by the nonlinear strain of Eq. (38) and the corresponding nonlinear stress. On the other
hand, Model 3 uses the Lagrange nonlinear strain of Eq. (10) and a linearized stress

sy ¼ E½�̄y þ xf0i=Rþ zðf� f0oÞ=R� (39)

and Model 4 uses the von Karman nonlinear strain of Eq. (38) and the linearized stress of Eq. (39). The model
of strain and stress, which is similar to Model 4, can be found in Refs. [21,22], where the equations of motion
for spinning disks are derived based on the von Karman strain and the linearized stress. Finally, Model 5 is
defined by a linearized strain

�y ¼ �̄y þ xf0i=Rþ zðf� f0oÞ=R (40)

and the linearized stress of Eq. (39). These five models are summarized in Table 3.
First, consider Model 5, because only this model yields linear equations of motion. Using this model, none

of all the nonlinear terms appear in the equations of motion given by Eqs. (17)–(20). The dimensionless
natural frequencies ōn of Model 5 are presented in Fig. 3 where the dimensionless fluid velocity Ū varies.
Similarly to Fig. 2, the in-plane and out-of-plane natural frequencies are plotted as solid and dashed lines,
respectively. The completely nonlinear case (Model 1) and the linear case (Model 5) show considerable
differences in Figs. 2 and 3. As seen in Fig. 3, both the in-plane and out-of-plane natural frequencies decrease
with the fluid velocity and they become zero at some specific values of fluid velocity. When the natural
frequency has a zero value, the pipe system may begin to be unstable. The fluid velocity at which the natural
frequency is zero is called the critical speed. If the fluid velocity is above the critical speed, the pipe system of
Model 5 is subjected to instability such as divergence instability or flutter instability. In fact, the behaviors of
the natural frequencies, as shown in Fig. 3, are quite similar to those of Chen [7,8]. However, Hill and Davis [9]
claimed that a fluid-conveying circular pipe does not lose stability even in the case of a high fluid velocity if the
centerline is extensible. For these reasons, it can be said that the linear model does not reflect real physical
behavior and the nonlinearity should be taken into account in order to predict the behavior. Hence, there is no
further discussion on Model 5 in this section.
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Table 3

Five models for the circumferential strain and stress used to investigate the effects of the nonlinear terms on the natural frequencies

Model Circumferential strain and stress Remarks

Model 1 �y ¼ �̄y þ xf0i=Rþ zðf� f0oÞ=Rþ ð�̄2y þ f2
i þ f2

oÞ=2 Lagrange nonlinear strain

sy ¼ E½�̄y þ xf0i=Rþ zðf� f0oÞ=Rþ ð�̄2y þ f2
i þ f2

oÞ=2� Lagrange nonlinear stress

Model 2 �y ¼ �̄y þ xf0i=Rþ zðf� f0oÞ=Rþ ðf2
i þ f2

oÞ=2 von Karman nonlinear strain

sy ¼ E½�̄y þ xf0i=Rþ zðf� f0oÞ=Rþ ðf2
i þ f2

oÞ=2� von Karman nonlinear stress

Model 3 �y ¼ �̄y þ xf0i=Rþ zðf� f0oÞ=Rþ ð�̄2y þ f2
i þ f2

oÞ=2 Lagrange nonlinear strain

sy ¼ E½�̄y þ xf0i=Rþ zðf� f0oÞ=R� Linearized stress

Model 4 �y ¼ �̄y þ xf0i=Rþ zðf� f0oÞ=Rþ ðf2
i þ f2

oÞ=2 von Karman nonlinear strain

sy ¼ E½�̄y þ xf0i=Rþ zðf� f0oÞ=R� Linearized stress

Model 5 �y ¼ �̄y þ xf0i=Rþ zðf� f0oÞ=R Linearized strain

sy ¼ E½�̄y þ xf0i=Rþ zðf� f0oÞ=R� Linearized stress
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The in-plane and out-of-plane natural frequencies of the semi-circular pipe conveying fluid are investigated
for Models 1–4, as shown in Table 3. For the variations of the dimensionless fluid velocity Ū , the
dimensionless natural frequencies ōn for the four models are presented in Figs. 4 and 5. Fig. 4 shows the in-
plane natural frequencies while Fig. 5 shows the out-of-plane natural frequencies. In these figures, the solid,
dashed, dotted and dash-dotted lines represent Models 1, 2, 3 and 4, respectively. From Figs. 4 and 5, it can be
stated that, in general, all four models produce similar results at a very low fluid velocity. For example, when
Ū ¼ 0, all the models have the same natural frequencies. However, the differences between some models
become significant as Ū increases. These differences are due to the existence of geometric nonlinearities.
Note that these effects in the semi-circular pipe could not be captured without considering the nonlinear
terms of Eq. (10).

As shown in Figs. 4 and 5, there is no large difference between the natural frequencies obtained
from Models 1 and 3. Table 4 compares the two lowest dimensionless natural frequencies when Ū ¼ 5 for
Models 1–4. The numbers in parentheses of Table 4 are the differences of the natural frequencies between
Model 1 and the other models. Table 4 and Figs. 4 and 5 demonstrate that the natural frequencies of Model 3
are the closest to those of Model 1, compared to Models 2 and 4. Therefore, Model 1 or 3 is suggested for
predicting the natural frequencies at a high fluid velocity. Recall that Model 1 reflects full nonlinearities of the
circumferential strain and stress while Model 3 reflects nonlinearity for the strain only. Since Model 3 requires
less computational cost than Model 1, it is beneficial to use Model 3. In other words, in order to compute the
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natural frequencies of the semi-circular pipe accurately and efficiently, the Lagrange nonlinear strain and the
linearized stress (Model 3) should be used to derive the equations of motion.

To show differences between the four models in a practical problem, the natural frequencies are considered
for a circular pipe in a nuclear power plant. The material properties of the pipe are given by
E ¼ 3.9786� 109N/m2, mp ¼ 0.1415 kg/m and mf ¼ 0.3874 kg/m while the dimensions of the pipe are
R ¼ 511mm, d0 ¼ 25.375mm and h ¼ 1.5875mm. Table 5 shows the fundamental natural frequencies for the
circular pipe when U ¼ 20 and 80m/s. In this table, (fn)i and (fn)o are the fundamental natural frequencies of
the pipe for the in-plane and out-of-plane motions, respectively. The numbers in parentheses also mean the
differences of the natural frequencies between Model 1 and the other models. As shown in Table 5, the natural
frequencies do not have large differences between the four models when the fluid velocity is relatively low or
when U ¼ 20m/s. However, if the velocity increases to U ¼ 80m/s, the natural frequency differences become
large. As discussed before, it may be concluded that the computation results from Model 3 are not only
accurate but they are also efficient.

6. Summary and conclusions

For a semi-circular pipe conveying fluid, the nonlinear equations of in-plane and out-of-plane motions are
derived by using the extended Hamilton principle. During the derivation, the Lagrange strain theory is applied
to consider the geometric nonlinearity of the semi-circular pipe. Furthermore, the extensibility of the pipe
centerline is also considered. The derived equations consist of two nonlinear equations of in-plane motion, a
nonlinear equation of out-of-plane motion and a linear equation of torsional motion. The equations of motion
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circular pipe conveying fluid: (a) first natural frequency and (b) second natural frequency. Model 1 (solid line); Model 2 (dashed line),

Model 3 (dotted line) and Model 4 (dash-dot line).

Table 4

Comparison of the two lowest dimensionless natural frequencies for Models 1–4 when Ū ¼ 5

In-plane natural frequencies Out-of-plane natural frequencies

ō1 ō2 ō1 ō2

Model 1 3.4351 9.2944 2.5044 6.9497

Model 2 3.5976 9.4642 2.6971 7.1699

(4.73%) (1.83%) (7.69%) (3.17%)

Model 3 3.4545 9.2942 2.4995 6.9225

(0.56%) (�0.01%) (�0.20%) (�0.39%)

Model 4 3.6333 9.4836 2.6771 7.1815

(5.77%) (2.04%) (6.90%) (3.34%)
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are discretized by applying the Galerkin method. The discretized equations are expressed as a nonlinear
matrix–vector equation, from which the linearized equation around the equilibrium position is obtained to
investigate the natural frequencies. In addition, some modelling issues, which are related to the nonlinearity of
the circumferential strain and stress, are also discussed.

The results of this study can be summarized as follows:
(1)
 Fast fluid flow in a semi-circular pipe imposes a softening effect on the in-plane motion; however, it
imposes a stiffening effect on the out-of-plane motion.
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Table 5

Comparison of the fundamental natural frequencies for a semi-circular pipe in a nuclear plant

U ¼ 20m/s U ¼ 80m/s

(fn)i (Hz) (fn)o (Hz) (fn)i (Hz) (fn)o (Hz)

Model 1 8.6375 20.8423 17.4802 11.0412

Model 2 8.6405 20.8436 17.9559 11.6535

(0.04%) (0.01%) (2.72%) (5.55%)

Model 3 8.6364 20.8523 17.5647 10.9979

(�0.01%) (0.05%) (0.48%) (�0.39%)

Model 4 8.6396 20.8538 18.0808 11.5762

(0.03%) (0.06%) (3.44%) (4.84%)
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(2)
 A semi-circular pipe conveying fluid does not lose stability even for a high fluid velocity.

(3)
 At a low fluid velocity, none of the models (Models 1–5) produce large differences in the natural

frequencies.

(4)
 At a high fluid velocity, the natural frequencies of the nonlinear models (Models 1–4) do not decrease to

zero, but those of the linear model (Model 5) decrease to zero.

(5)
 Model 3 should be used to predict the natural frequencies accurately and effectively.
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